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Abstract
Recently, contrastive learning has begun to
gain popularity in multimodal sentiment anal-
ysis (MSA). However, most of existing MSA
methods based on contrastive learning lacks
more detailed learning of the distribution of
sample pairs with different sentiment intensity
differences in the contrastive learning repre-
sentation space. In addition, limited research
has been conducted on the fusion of each
modality representation obtained by contrastive
learning training. In this paper, we propose
a novel framework for multimodal sentiment
analysis based on Contrastive Learning Guided
by Sentiment Intensity (CLGSI). Firstly, the
proposed contrastive learning guided by sen-
timent intensity selects positive and negative
sample pairs based on the difference in sen-
timent intensity and assigns corresponding
weights accordingly. Subsequently, we propose
a new multimodal representation fusion mech-
anism, called Global-Local-Fine-Knowledge
(GLFK), which extracts common features be-
tween different modalities’ representations. At
the same time, each unimodal encoder output
is separately processed by a Multilayer Per-
ceptron (MLP) to extract specific features of
each modality. Finally, joint learning of the
common and specific features is used to pre-
dict sentiment intensity. The effectiveness of
CLGSI is assessed on two English datasets,
MOSI and MOSEI, as well as one Chinese
dataset, SIMS. We achieve competitive ex-
perimental results, which attest to the strong
generalization performance of our approach.
The code for our approach will be released in
https://github.com/***/***

1 Introduction

Sentiment is one of the most important ways for
human beings to perceive the world, and it can
significantly affect human behavior and decision-
making. MSA aims to comprehensively analyze
human sentiments by integrating and examining in-
formation from diverse modalities (Cambria et al.,

2014; Morency et al., 2011), such as text, video
and audio. This integration and analysis enables
machines to better understand and interpret human
sentiments. Due to the rapid advancements in mul-
timedia and computer technologies, MSA has gar-
nered significant attention within the Natural Lan-
guage Processing (NLP) community (Liu et al.,
2022; Sun et al., 2020; Zadeh et al., 2017).

In recent times, contrastive learning has gained
popularity in the field of MSA. The MSA ap-
proaches based on contrastive learning involve
three significant issues: 1) the selection of positive
and negative sample pairs, 2) the attention given to
different positive and negative samples during the
learning process, and 3) the integration of modality
representations obtained after contrastive learning.
Several researchers have proposed solutions to ad-
dress these issues.

Mai et al. (Mai et al., 2022) first introduced con-
trastive learning in MSA and proposed Hycon. In
their method, positive and negative sample pairs
are first roughly divided using labels. During train-
ing, positive and negative sample pairs are dynami-
cally selected based on the similarity across modal-
ities. Another approach, ConFEDE, was proposed
by Yang et al. (Yang et al., 2023), who argued
that the text is generally more effective than audio
and video in MSA. Thus, ConFEDE selects sam-
ple pairs to be trained during the learning process
by considering text similarity, and only selects 2
positive samples and 4 negative samples for each
anchor.

Although the aforementioned methods have
yielded promising results, they do not account for
differences in sentiment intensity between samples.
Samples with sentiment intensity of -0.2 and -0.4
are likely to be treated as negative samples pair ac-
cording to the pairs selection mechanism of HyCon
and ConFEDE. However, they still have similarities
in terms of labels and should not be pushed away in
the representation space. In contrast, ConKI, pro-
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posed by Yu et al. (Yu et al., 2023), can alleviate
this problem to some extent by selecting positive
and negative sample pairs using predefined senti-
ment intervals (e.g., positive, weak positive, etc.)
in the dataset.

Moreover, the majority of existing studies treat
the learning of different sample pairs equally and
lack a detailed learning of the distribution of sam-
ple pairs with varying sentiment intensity differ-
ences in the representation space. Nevertheless,
in MSA, it is crucial to assign distinct attention
to sample pairs with differing sentiment intensity
differences during the optimization process of con-
trastive learning. For example, take the negative
sample pair A: {y1=-0.4, y2=+1} and B: {y1=-0.4,
y3=+0.6}. It is obvious that A exhibits a larger
sentiment intensity difference than B. Therefore,
it is necessary to pay more attention to A, that is,
letting the two samples in A have a greater relative
distance in the representation space.

In addition, the modal representations obtained
by contrastive learning training in the aforemen-
tioned studies are simply concatenated and fed into
the MLP, which lacks further exploration of the in-
tegration of representation information, potentially
restricting the model’s generalization performance.

Considering the aforementioned limitations, we
introduce a novel multimodal sentiment analysis
framework based on Contrastive Learning Guided
by Sentiment Intensity (CLGSI). Our contributions
are summarized as follows:

• We propose contrastive learning guided by
sentiment intensity. The selection of positive
and negative sample pairs in contrastive learn-
ing guided by the sentiment intensity differ-
ence, with corresponding weights being as-
signed accordingly. This enriches the con-
trastive learning process with fine-grained in-
formation.

• We propose a multi-modal representation
fusion mechanism, Global-Local-Fine-
Knowledge (GLFK), that mimics the human
cognitive process. We use the GLFK mech-
anism to fuse the representations of each
modality obtained by contrastive learning
training to extract the common features across
different modalities. At the same time, we
use MLP to process the output of each modal
encoder to extract the specific features of
each modality. Finally, the joint learning of

common features and specific features was
used to predict the sentiment intensity.

• We conduct extensive experiments on public
English and Chinese MSA datasets. Competi-
tive experimental results show that CLGSI can
better understand sentiment expressions under
different cultural differences, which proves
the good generalization performance and ef-
fectiveness of our model.

2 Related Work

2.1 Multimodal Sentiment Analysis

In the field of MSA, a major concern of researchers
is the fusion and interaction between modalities.
In earlier works, the main focus was on strategies
for modality fusion. There are two common fusion
strategies: early fusion and late fusion. Early fu-
sion, constructs a joint feature representation by
extracting the features of each modality and merg-
ing them at the input level (Morency et al., 2011;
Park et al., 2016; Rosas et al., 2013; Zadeh et al.,
2018b). Late fusion, firstly conducts sentiment
analysis based on each modality, and then uses
different mechanisms to incorporate the unimodal
sentiment decision into the final decision. The com-
mon decision mechanism is weighted voting and
majority voting (Alam and Riccardi, 2014; Cai and
Xia, 2015; Kampman et al., 2018; Nojavanasghari
et al., 2016).

Researchers have recently shifted their focus
from solely modality fusion to also considering
the interaction between modalities. For instance,
Zadeh et al. (Zadeh et al., 2017) proposed a tensor
fusion method that learns the intra-modal and inter-
modal dynamics of three modalities in an end-to-
end manner, aiming to improve MSA performance.
Rahman et al. (Rahman et al., 2020) developed
the Multimodal Adaptation Gate (MAG), which
fine-tunes the BERT model (Devlin et al., 2018) to
enhance MSA performance. Additionally, Han et
al. (Han et al., 2021) proposed a method that simul-
taneously maximizes the mutual information (MI)
between modalities and the MI between the mul-
timodal fusion results and unimodal inputs, thus
enhancing the model’s capabilities.

Subsequently, researchers began to focus on the
significance of simultaneously considering both
the common and specific features across different
modalities in the context of MSA. Hazarika et al.
(Hazarika et al., 2020) proposed MISA, which di-
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Figure 1: The overall architecture of CLGSI. F ∗
c denotes the common features, while Isv , Ist and Isa represent the

specific features associated with each modality.

vides each modality into modality-invariant sub-
spaces and modality-specific subspaces, and then
fuses them to predict sentiment. Similarly, Yang et
al. (Yang et al., 2022) introduced FDMER, which
decompose modalities into two subspaces, and in-
troduce a modality discriminator to guide the pa-
rameter learning of the common and private en-
coder in an adversarial manner. In this study, we
design two modules to extract the common features
among diverse modalities and the specific features
of each modality, and use these features to predict
sentiment intensity.

2.2 Contrastive Learning

Contrastive learning, as an effective method for
representation learning, has been widely explored
in the community. Previous research on contrastive
learning can be categorized into two main types:
self-supervised contrastive learning (Akbari et al.,
2021; Chen et al., 2020; Radford et al., 2021) and
supervised contrastive learning (Hu et al., 2022;
Khosla et al., 2020). The key distinction between
these approaches lies in whether label information
is employed to guide the selection of positive and
negative sample pairs.

Recently, there has been a growing interest in
supervised contrastive learning into MSA. For in-
stance, Hycon, proposed by Mai et al. (Mai et al.,
2022), is the first to leverage contrastive learning
to enhance modal interactions in MSA. ConFEDE

proposed by Yang et al. (Yang et al., 2023), used
the similarity between texts to guide the joint execu-
tion of contrastive representation learning and con-
trastive feature decomposition. ConKI proposed
by Yu et al. (Yu et al., 2023), utilizes contrastive
knowledge injection so that the model can learn
both specific and general knowledge representa-
tions for each modality. Although these works
have achieved good results, they still have some
limitations, as discussed in the introduction.

3 Methodology

3.1 Overall Architecture
The overall architecture of CLGSI is shown in Fig-
ure 1. Each input modality is encoded differently:
Text uses the BERT, while video and audio use
the pre-training toolkit for initial feature extrac-
tion (Yu et al., 2021), followed by the Transformer
Encoder (Vaswani et al., 2017). The encoded rep-
resentations of the sample’s text, video, and audio
modalities are denoted as It ∈ Rlt×dt , Iv ∈ Rlv×dv

and Ia ∈ Rla×da , respectively. Here, lm∈{t,v,a}
represents the sequence length of each modality,
and dm∈{t,v,a} represents the corresponding feature
vector dimension.

Based on these representations, the common fea-
tures between different modalities and the specific
features of each modality are extracted separately.
In the common feature extraction module, the con-
trastive learning guided by sentiment intensity is
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(a) GLFK (b) Subnet

Figure 2: The architecture of GLFK and Subnet

performed to enhance the representation ability
of encoders. Finally, a 3-layer MLP was used to
jointly learn the common features and specific fea-
tures to predict the sentiment intensity.

3.2 Common Feature Extraction

In the common feature extraction module, the pri-
mary objective is to project the information from
different modalities into the same representation
space. For the text modality, the [CLS] vector
from BERT Ict ∈ R1×dt is used as the common
vector representation. For the video and audio
modalities, we use the last vector output from the
last layer of the transformer encoder Icv ∈ R1×dv

and Ica ∈ R1×da as the common vector representa-
tion, respectively. Subsequently, these three vec-
tors are transformed to the same dimension using
a fully connected (FC) layer and a ReLU activa-
tion function, yielding Tc ∈ Rdc×1, Vc ∈ Rdc×1

and Ac ∈ Rdc×1. To enhance the representation
capability of the encoders from different modal-
ities, we employ the contrastive learning guided
by sentiment intensity, enabling these information
from different modalities to project onto the same
representation space (see section 3.4 for details).
Additionally, we stack Vc, Tc and Ac into a new ma-
trix Fc = [Vc;Tc;Ac] ∈ Rdc×3 which serves as the
input of GLFK, thereby facilitating the extraction
of common features between different modalities.

The GLFK, a novel representation fusion mech-
anism inspired by human cognitive processes, com-
prises four components: Global, Local, Fine, and
Knowledge (as illustrated in Figure 2(a)). To illus-
trate the mechanism, we draw an analogy between
reading academic papers and our approach. Typi-
cally, individuals begin by reading the abstract to
gain an overview of the research. This aligns with
the Global component of GLFK, where we em-
ploy a 1×1 convolution (Conv) operation to glob-
ally compress the information. As a result, the
Fc ∈ Rdc×3 is compressed to F 1

c ∈ Rdc×1, fa-

cilitating an overall understanding of the content.
Next, readers proceed to skim through the paper to
grasp the main work, followed by in-depth reading
to comprehend the technical details. This corre-
sponds to the Local and Fine components of GLFK.
Specifically, we utilize two 1×1 convolutions to
expand F 1

c ∈ Rdc×1 to F 2
c ∈ Rdc×β/2, and sub-

sequently expand it to F 3
c ∈ Rdc×β , where β is

a hyperparameter (set to 16 in this paper). Fol-
lowing these stages, readers possess a profound
understanding and knowledge of the paper. Lastly,
they summarize this knowledge, ultimately obtain-
ing refined insights. This process aligns with the
Knowledge component of GLFK, where a 1×1 con-
volution is employed to reduce the F 3

c ∈ Rdc×β/2

to F ∗
c ∈ Rdc×1. Consequently, the common fea-

tures across different modalities F ∗
c are obtained.

3.3 Specific Feature Extraction
In the specific feature extraction module, our fo-
cus lies on efficiently capturing the comprehensive
information within a modality. The sub-network
(Subnet) structure for specific feature extraction
is depicted in Figure 2(b). Given a modality
Im ∈ Rlm×dm ,m ∈ {t, v, a}, we begin by uti-
lizing global average pooling (GAP) along the se-
quence length to compressed Im to I1m ∈ R1×dm .
Subsequently, a two-step nonlinear transforma-
tion is applied to project I1m into a new lower-
dimensional space:

Ism = σ2(W2σ1(W1I
1T
m )),m ∈ {t, v, a}

where W1 ∈ R(dm/8)×dm , W2 ∈ Rds×(dm/8), and
Ism ∈ Rds×1, the σ1 represents the ReLU function,
the σ2 represents the Sigmoid function.

3.4 Contrastive Learning guided by
Sentiment Intensity

3.4.1 Pair Selection
This section presents a two-step process to describe
the selection of positive and negative sample pairs:
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1) Initially, we determine the initial positive
and negative pairs by calculating the difference
between their corresponding sentiment intensities.
Due to differing sentiment intensity ranges ([-3,3]
in MOSI/MOSEI and [-1,1] in SIMS), we use uni-
form mapping to convert label values to [-1,1],
only during contrastive learning. Given a batch
B, we calculate the sentiment intensity difference
between sample i ∈ B and different samples using
the following formula:

D(i,j) = |yi − yj | , j ∈ B & j ̸= i (1)

where yi and yj represent the sentiment intensity la-
bels of samples i and j, respectively. Subsequently,
we utilize a sentiment intensity difference threshold
(κ), a hyperparameter set to 0.4 in this paper, to de-
termine whether sample j is classified as an initial
positive or negative sample of i. This process is
illustrated in the subsequent equation:{

D(i,j) > κ, (i, j) ∈ initial negative pairs

D(i,j) ≤ κ, (i, j) ∈ initial positive pairs

2) Based on the intra-modal and inter-modal
cases, we provide a detailed division of positive
and negative sample pairs. Given an set of initial
positive and negative sample pairs, for a sample i,
the intra-modal and inter-modal positive and nega-
tive sample pairs are chosen as follows:

• Intra-modal pairs:

P i
intra = {(T i

c , T
j
c ), (V

i
c , V

j
c ), (A

i
c, A

j
c)

| (i, j) ∈ initial positive pairs}

N i
intra = {(T i

c , T
k
c ), (V

i
c , V

k
c ), (A

i
c, A

k
c )

| (i, k) ∈ initial negative pairs}

• Inter-modal pairs:

P i
inter = {(V i

c , T
i
c), (V

i
c , A

i
c), (T

i
c , A

i
c)}∪

{(V i
c , T

j
c ), (T

i
c , V

j
c ), (V

i
c , A

j
c),

(Ai
c, V

j
c ), (T

i
c , A

j
c), (A

i
c, T

j
c )

| (i, j) ∈ initial negative pairs}

N i
inter = {(V i

c , T
k
c ), (T

i
c , V

k
c ), (V

i
c , A

k
c ),

(Ai
c, V

k
c ), (T

i
c , A

k
c ), (A

i
c, T

k
c )

| (i, k) ∈ initial negative pairs}

where T i
c , V i

c , Ai
c correspond to the representations

of three different modalities of sample i, while the
rest of the symbols have the same meaning.

By combining the intra-modal pairs and inter-
modal pairs of the sample i together, we obtain the
positive and negative sample pairs P i and N i of
sample i in contrastive learning process as follows:

P i = P i
intra ∪ P i

inter

N i = N i
intra ∪N i

inter

3.4.2 Contrastive Loss
After identifying the positive and negative sam-
ple pairs, we attempt to incorporate fine-grained
information into the contrastive learning training
process based on the sentiment intensity difference.

For instance, given samples i, j, and k, where the
sentiment intensity difference from i to j and k are
0.5 and 1.6, respectively (as defined by (1)), both
(i, j) and (i, k) are initial negative sample pairs of
i. However, the sentiment intensity difference be-
tween sample i and k is noticeably greater. Thus,
we assign a higher weight to (i, k) when calculat-
ing the contrastive loss to push samples i and k
further apart in the representation space compared
to samples i and j. In CLGSI, we design a weight
function (as visualized in Figure 3) by using the
non-linear function |tanh(x)| as follows:

ω(i,j) =
{ ∣∣tanh (D(i,j) − 2κ

)∣∣× 1.5, (i, j) ∈ initial positive pairs
| tanh

(
D(i,j)

)
| × 1.5, (i, j) ∈ initial negative pairs

(2)
For ease of presentation, we integrate intra-modal
and inter-modal contrastive learning into the same
formula. Given a batch B, the contrastive loss is
expressed as follows:

Lcl = −Ei∈B log

∑
(a,p)∈P i

δ(a, p)∑
(a,q)∈P i∪N i

δ(a, q)
(3)

where δ(a, p) = e[w(i,j)∗
sim(a,p)

τ
], and w(i,j) is the

weight specified by the equation (2).
An illustrative example of the learning process

is presented in the upper right corner of Figure 1.

Figure 3: Weight function.
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3.5 Overall Learning Objectives
After extracting the common and specific features,
we concatenate the common feature vector F ∗

c

with the specific feature vectors Isv , I
s
t , I

s
a of the

three modalities to obtain F ∗ = [Isv , I
s
t , I

s
a, F

∗
c ] ∈

Rd∗×1, where d∗ = 3ds + dc. We then feed F ∗

into a 3-layer MLP to predict the sentiment inten-
sity value ŷi. Given the ground truth yi, the mean
absolute error is used to compute the MSA task
loss, given by:

Ltask =
1

Nb

Nb∑
i

|yi − ŷi|

where Nb is the number of samples in the batch B.
To combine both the task loss Ltask and the con-

trastive loss Lcl, we define the overall learning
objective of CLGSI as follows:

Loverall = Ltask + γLcl

where γ is a hyperparameter.

4 Experiment

4.1 Dataset and Metrics
We conduct extensive experiments on three popu-
lar datasets: MOSI (Zadeh et al., 2016) and MO-
SEI(Zadeh et al., 2018c) in English, and SIMS (Yu
et al., 2020) in Chinese. Appendix A provides fur-
ther details on the dataset.

To ensure a fair comparison, we report our exper-
imental results in both regression and classification.
For regression, we report the mean absolute error
(MAE) and Pearson correlation (Corr). For clas-
sification, we report the multi-class accuracy and
F1 score. We calculate the accuracy of 2-class pre-
diction (Acc-2) and 5-class (Acc-5) prediction for
CH-SIMS, and the accuracy of 2-class prediction
and 7-class prediction (Acc-7) for MOSI and MO-
SEI. In addition, the Acc-2 and F1 scores for SIMS
are computed for positive/non-positive (including
zero) classes. The Acc-2 and F1 scores for MOSI
and MOSEI are reported for negative/positive (ex-
cluding zero) and negative/non-negative (including
zero) classes. Higher values indicate better perfor-
mance for all metrics except for MAE.

4.2 Baselines
We provide a comprehensive comparison between
CLGSI and state-of-the-art baselines, which are
summarized in Tables 1 and 2. These baselines
include LF-DNN (Yu et al., 2020), MFN (Zadeh

et al., 2018a), LMF (Liu et al., 2018), TFN (Zadeh
et al., 2017), MulT (Tsai et al., 2019), MISA (Haz-
arika et al., 2020), MAG-BERT (Rahman et al.,
2020), HyCon (Mai et al., 2022), Self-MM (Yu
et al., 2021), and ConFEDE (Yang et al., 2023).
For the sake of fair comparison, all the methods we
selected have public code for easy replication. In
Appendixes B and C, we provide comprehensive
details of the models compared and the experimen-
tal setup, respectively.

4.3 Results
Tables 1 and 2 present the performance compari-
son results of each model on the SIMS, MOSI, and
MOSEI datasets. Overall, CLGSI achieves com-
petitive results compared to the baselines across all
three datasets.

On the MOSI dataset, CLGSI outperforms all
baselines in Acc-2, F1, Acc-7, and MAE. These re-
sults indicate that the newly introduced contrastive
learning mechanism in CLGSI effectively learns
the representations of different modalities, enabling
the model to perform well even on small datasets.
On the MOSEI dataset, CLGSI outperforms all
baselines in Acc-2, F1 and Acc-7. Particularly,
CLGSI improves by at least 0.5% over all baselines
in Acc-2 and F1. For the SIMS dataset, CLGSI out-
performs all baselines in Acc-2, while achieving
comparable performance to the best baseline Con-
FEDE in the other four metrics.

Moreover, CLGSI demonstrates strong perfor-
mance in multiclass classification metrics across
all three datasets. On the MOSI dataset, Acc-7
surpasses the baselines by at least 1.36%. On the
MOSEI dataset, Acc-7 outperforms the baselines
by at least 1.1%. Although CLGSI falls slightly
behind ConFEDE by 0.39% in Acc-5 on the SIMS
dataset, it still outperforms the other baselines in
Acc-5. This result shows that the contrastive learn-
ing mechanism in CLGSI can help the model cor-
rectly learn the sentiment information under differ-
ent cultural differences, so as to enhance the fine-
grained metric of multi-classification accuracy.

As a recently developed MSA method based on
contrastive learning, ConFEDE exhibits superior
overall performance among the baselines. Given
its prominence, ConFEDE serves as the primary
baseline for comparison with CLGSI. A combined
analysis of Tables 1 and 2 reveals that CLGSI out-
performs ConFEDE in terms of Acc-2 across all
datasets. On the large dataset MOSEI and the
small dataset MOSI, ConFEDE achieves Acc-7
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Model
MOSI MOSEI

Acc-2 F1 Acc-7 MAE Corr Acc-2 F1 Acc-7 MAE Corr
LF-DNN 77.52/78.63 77.46/78.63 34.52 0.955 0.658 80.60/82.74 80.85/82.52 50.83 0.58 0.709
MFN 77.4/- 77.3/- 34.1 0.965 0.632 78.94/82.86 79.55/82.85 51.34 0.573 0.718
LMF -/82.5 -/82.4 33.2 0.917 0.695 80.54/83.48 80.94/83.36 51.59 0.576 0.717
TFN -/80.8 -/80.7 34.9 0.901 0.698 78.50/81.89 78.96/81.74 51.6 0.573 0.714
MulT -/83.0 -/82.8 40 0.871 0.698 81.15/84.63 81.56/84.52 52.84 0.559 0.733
MISA 81.8/83.4 81.7/83.6 42.3 0.783 0.776 83.6/85.5 83.8/85.3 52.2 0.555 0.756
MAG-BERT 82.13/83.54 81.12/83.58 41.43 0.79 0.766 82.51/84.82 82.77/84.71 50.41 0.583 0.741
HyCon -/85.2 -/85.1 46.6 0.713 0.79 -/85.4 -/85.6 52.8 0.601 0.776
Self-MM 83.44/85.46 83.36/85.43 46.67 0.708 0.796 83.76/85.15 83.82/84.90 53.87 0.531 0.765
ConFEDE 84.17/85.52 84.13/85.52 42.27 0.742 0.784 81.65/85.82 82.17/85.83 54.86 0.522 0.78
Self-MM* 82.54/84.77 82.68/84.91 45.79 0.712 0.795 82.68/84.96 82.95/84.93 53.46 0.529 0.767
ConFEDE* 83.24/84.76 83.23/84.8 41.98 0.755 0.779 82.36/84.78 82.45/84.55 52.99 0.55 0.757
CLGSI 83.97/86.43 83.63/86.25 47.96 0.703 0.79 84.01/86.32 84.21/86.18 54.56 0.532 0.763

Table 1: Results on MOSI and MOSEI. In Acc-2 and F1 score, the left and right sides of the slash (“/”) represent
“negative/non-negative” and “negative/positive”, respectively. Models with * are reproduced under the same
conditions, while other results are from (Yang et al., 2023).

Model
SIMS

Acc-2 F1 Acc-5 MAE Corr
LF-DNN 78.87 79.87 41.62 0.42 0.612
MFN 77.9 77.88 39.47 0.435 0.582
LMF 77.77 77.88 40.53 0.441 0.576
TFN 78.38 78.62 39.3 0.432 0.591
MulT 78.56 79.66 37.94 0.453 0.561
Self-MM 80.04 80.44 41.53 0.425 0.595
ConFEDE 82.23 82.08 46.3 0.392 0.637
Self-MM* 78.71 78.76 42.94 0.411 0.601
ConFEDE* 81.05 81.13 46.34 0.377 0.655
CLGSI 81.18 80.59 45.95 0.408 0.634

Table 2: Results on SIMS. Models with * are reproduced
under the same conditions, while other results are from
(Yang et al., 2023).

of 52.99% and 41.98% respectively, showing a
difference of 11.01%. On the other hand, CLGSI
achieves Acc-7 of 54.56% and 47.96% respectively,
showing a difference of 6.6%. This finding indi-
cates that compared to ConFEDE, CLGSI demon-
strates stronger generalization ability. On the SIMS
dataset, CLGSI slightly underperforms ConFEDE.
This is because ConFEDE utilizes additional uni-
modal labels provided in the dataset to pretrain
unimodal encoders, leading to improved perfor-
mance on the Chinese dataset. However, without
additional unimodal labels in MOSI/MOSEI, Con-
FEDE performs worse than CLGSI overall. This
indicates that ConFEDE relies on unimodal labels
and pre-training. In contrast, CLGSI achieves com-
petitive results on all three datasets without the
need for additional pre-training.

4.4 Ablation Study

To evaluate the effectiveness of CLGSI’s contribu-
tion, we conducted ablation studies on MOSI and
SIMS. Specifically, for MOSI, we reported Acc-2
(excluding zero) and Acc-7, while for SIMS, we
reported Acc-2 and Acc-5.

4.4.1 Effectiveness of the contrastive learning
guided by sentiment intensity

To discuss the effect of the contrastive learning
guided by sentiment intensity, we show the ablation
result in Table 3, where “w/o CL” denoting the
absence of the contrastive learning method, and
“w/o Weight” indicating the utilization of sentiment
labels to guide the selection of positive and negative
sample pairs, without the incorporation of weights.

From the experimental results, we observe that
the contrastive learning guided by sentiment in-
tensity yields significant improvements for both
MOSI and SIMS. However, the performance on
MOSI is slightly degraded in the “w/o Weight”
case. This can be attributed to the fact that MOSI
includes more fine-grained sentiment intensity la-
bels compared to SIMS. Consequently, without
the incorporation of weights, contrastive learning
may struggle to capture fine-grained information,
thereby affecting the overall model performance.
The proposed contrastive learning guided by senti-
ment intensity, which integrates sentiment intensity
guidance-based weights, has yielded significant im-
provements in Acc-2 and Acc-7/Acc-5 for both
MOSI and SIMS datasets. This highlights the ef-
fectiveness of the contrastive learning guided by
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sentiment intensity in enhancing the performance
of the model.

Model
MOSI SIMS

Acc-2 Acc-7 Acc-2 Acc-5
w/o CL 83.08 45.63 77.9 43.76
w/o Weight 82.77 44.75 79.21 44.2
CLGSI 86.43 47.96 81.18 45.95

Table 3: The ablation study results of the contrastive
learning guided by sentiment intensity.

4.4.2 Effectiveness of GLFK

To demonstrate the efficacy of GLFK in CLGSI,
we conducted a comparative analysis with the tra-
ditional “Add” and “Concatenate”. This means that
Vc, Tc and Ac are directly added or concatenated
into a one-dimensional vector and output as a com-
mon feature. Additionally, we devised two variants
of GLFK for further evaluation. The first variant,
GK, omits the local and fine components present
in GLFK, while the second variant, referred to as
LFK, excludes the global component. The results
of our ablation studies (Table 4) reveal that the
performance of the “Add” and “Concatenate” is
inferior compared to GLFK. This can be attributed
to their limited capacity for deeper and more com-
prehensive information interaction. On the coarse-
grained metric (Acc-2), GK outperforms LFK by
leveraging overall cognition of information. Con-
versely, LFK surpasses GK on the fine-grained met-
rics of Acc-7 and Acc-5, as it effectively captures
detailed information. These findings underscore
the importance of considering both global and de-
tailed information in order to improve performance.
GLFK facilitates complete information interaction
across multiple modalities, enabling comprehen-
sive and detailed information to be extracted for
improved performance.

Model
MOSI SIMS

Acc-2 Acc-7 Acc-2 Acc-5
Add 83.23 45.34 79.65 43.33
Concatenate 82.32 43.29 79.43 43.11
GK 82.77 45.04 79.87 43.76
LFK 82.32 47.96 79.43 45.3
CLGSI 86.43 47.96 81.18 45.95

Table 4: The ablation study results of GLFK.

4.4.3 Effectiveness of combination of common
and specific features

In this subsection, we aim to evaluate the effec-
tiveness of joint learning of common and specific
features, the results of which are presented in Table
5. Specifically, “w/o Con” denotes the elimination
of the common feature extraction module, while
“w/o Spe” signifies the exclusion of the specific
feature extraction module.

It can be seen from the results that the model’s
performance is inferior when exclusively utiliz-
ing specific or common features compared to joint
learning. In the case of “w/o Con”, the fusion of
information between modalities solely relies on the
final MLP. This shallow fusion approach leads to
a certain level of performance degradation. In the
case of “w/o Spe”, the model struggles to acquire
effective common features for particularly complex
sample scenarios, thereby negatively impacting per-
formance. Nevertheless, when both common and
specific features are jointly learned, we observe
improved performance attributed to the comple-
mentarity between common and specific features.

Model
MOSI SIMS

Acc-2 Acc-7 Acc-2 Acc-5
w/o Spe 84.6 39.36 78.34 44.86
w/o Con 83.38 43.59 78.56 44.2
CLGSI 86.43 47.96 81.18 45.95

Table 5: The ablation study results of the combination
of common and specific features.

5 Conclusion

In this paper, we propose CLGSI, a novel MSA
method. Firstly, CLGSI uses the contrastive learn-
ing guided by sentiment intensity to project differ-
ent modalities into the same representation space.
Then, by mimicking human cognitive process,
GLFK is used to extract the common features be-
tween different modalities’ representations. At the
same time, the output of each modal encoder was
processed separately by MLP to extract the spe-
cific features of each modality. Finally, the joint
learning of common and specific features was used
to predict the sentiment intensity. We validate our
model on both English and Chinese datasets, and
the competitive results prove the good generaliza-
tion performance and effectiveness of our model.
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6 Limitation

While our model has shown impressive perfor-
mance on MSA tasks, it is important to acknowl-
edge the limitations that it faces. One notable
limitation is that the proposed contrastive learn-
ing guide by sentiment intensity, cannot be directly
applied to multimodal emotion recognition (MER)
tasks. This is because the sample labels in MER
tasks are different emotions (e.g., happy, angry, ex-
cited, etc.), and the sentiment intensity differences
between them cannot be easily calculated. As a
result, for MER tasks, we need to design an ex-
ternal mechanism that can transform the emotion
labels and calculate their corresponding sentiment
intensity differences. Our future work will aim
to explore and develop effective mechanisms to
address this limitation.
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A Dateset 798

Table 6 shows the statistics of these datasets. 799

MOSI: The MOSI dataset is a popular dataset 800

with three modalities (i.e. text, video, and au- 801

dio). It was collected from 93 YouTube videos in 802

which a speaker expressed an opinion on the film. 803

MOSI contains 2199 speech video clips. Each seg- 804

ment is assigned a sentiment score ranging from -3 805

(strongly negative) to +3 (strongly positive). 806

MOSEI: The MOSEI dataset is a larger ver- 807

sion of MOSI and contains 22856 annotated video 808

clips over 250 different topics. As in MOSI, the 809

sentiment score for each segment ranges from -3 810

(strongly negative) to +3 (strongly positive). 811

SIMS: The SIMS dataset is a Chinese multi- 812

modal dataset containing 2281 refined video clips. 813

Each sample has a multimodal label and three uni- 814

modal labels with sentiment scores ranging from 815

-1 (strongly negative) to +1 (strongly positive). 816
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Dataset Train Valid Test Total
MOSI 1284 229 686 2199
MOSEI 16326 1871 4659 22856
SIMS 1368 456 457 2281

Table 6: The statistics of MOSI, MOSEI and SIMS.

B Baselines817

LF-DNN: Late fusion DNN (LF-DNN) simply con-818

catenates unimodal features extracted from uni-819

modal features for sentiment inference (Yu et al.,820

2020)821

MFN: Memory Fusion Network (MFN) (Zadeh822

et al., 2018a), which first learns view-specific inter-823

actions via LSTM, then learns cross-view interac-824

tions via attention network, and finally summarizes825

time via multi-view gated memory. The outputs of826

the MFN are concatenated as the final representa-827

tion.828

LMF: Low-Rank Multimodal Fusion (LMF)829

method (Liu et al., 2018) utilizes low-rank tensors830

to perform multimodal fusion efficiently.831

TFN: The Tensor Fusion Network (TFN) (Zadeh832

et al., 2017) consists of 1) a modal embedding sub-833

network to enrich the encoding of unimodal fea-834

tures as input and output after the neural network,835

2) a tensor fusion layer to model unimodal, bi-836

modal, and trimodal interactions using outer prod-837

ucts, and 3) a sentiment inference subnetwork to838

perform sentiment inference.839

MulT: The Multimodal Transformer (MulT)840

(Tsai et al., 2019) leverages directional pairwise841

cross-modal attention to learn the interactions be-842

tween multimodal sequences and potentially adapt843

the flow from one modality to another.844

MISA: MISA (Hazarika et al., 2020) is a845

multimodal framework that learns a modality-846

invariant and modality-specific representation for847

each modality. The learning process is optimized848

by including a combination of similarity loss, or-849

thogonality loss, reconstruction loss, and task pre-850

diction loss.851

MAG-BERT: Multimodal Adaptation Gates for852

Bert (MAG-BERT) (Rahman et al., 2020) are de-853

veloped by applying multimodal adaptation gates854

at different layers of the BERT backbone.855

HyCon: Hybrid Contrastive Learning for Tri-856

modal Representations (HyCon) (Mai et al., 2022)857

is developed based on the contrastive learning858

method. It focuses on inter-sample and inter-class859

relationships, and reduce the modality gap.860

Self-MM: Self-MM (Yu et al., 2021) first utilizes 861

a self-supervised label generation module to obtain 862

unimodal labels, and then jointly learns multimodal 863

and unimodal representations based on multimodal 864

labels and the generated unimodal labels. 865

ConFEDE: ConFEDE (Yang et al., 2023) is also 866

a contrastive learning based framework. It per- 867

forms contrastive representation learning and con- 868

trastive feature decomposition jointly to improve 869

the representation of multimodal information. It 870

decomposes each of the three modalities of video 871

samples, including text, video frame and audio, 872

into similarity features and dissimilarity features, 873

and selects positive and negative sample pairs to 874

learn with text as the center. 875

C Experimental Settings 876

Here, we briefly present the detailed setup of our 877

experiments. All experiments were performed on 878

a single NVIDIA RTX 4090 GPU. The trainable 879

parameters of all implementations of CLGSI are 880

under 120M. The training mode is full training, 881

without additional pre-training. For Chinese text 882

encoding, we use “bert-base-chinese”1, and for En- 883

glish encoding, we use “bert-base-uncased”2. The 884

number of layers of video transformer encoder and 885

audio transformer encoder is 2. The optimizer is 886

AdamW and the learning rate policy is warmup. 887

Some of the key hyperparameters are shown in the 888

table 7. 889

Para MOSI MOSEI SIMS
Batch-size 64 128 64
Bert lr 5e-5 5e-5 5e-5
Visual Encoder lr 5e-3 5e-4 5e-4
Audio Encoder lr 1e-3 5e-4 5e-4
Others lr 1e-2 25e-4 5e-4
dc 64 128 64
ds 64 128 64

Table 7: Hyper-parameters of CLGSI for the multimodal
sentiment analysis.

1https://huggingface.co/bert-base-chinese
2https://huggingface.co/bert-base-uncased
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